Aneta Koseska

Cellular Cognition


Phone:+49 (231) 133 - 2225
Fax:+49 (231) 133 - 2299

Research Interests

We are interested how intercellular communication establishes information processing in cells to dynamically maintain their identity in multicellular context. Studying the relation between topology of signaling networks and their dynamics, both theoretically and experimentally, we investigate how cells in ensembles can generate novel dynamical solutions in terms of biochemical behavior, different than that of isolated cells. We also develop theories and mathematical tools to investigate whether signaling networks are inherently regulated to display rich dynamical behavior at a critical point in a parameter space, thereby determining the right balance between exploration and stability.

Selected Publications

PubMed List>

Stanoev A, Mhamane A, Schuermann KC, Grecco HE, Stallaert W, Baumdick M, Brüggemann Y, Joshi MS, Roda-Navarro P, Fengler S, Stockert R, Roßmannek L, Luig J, Koseska A, Bastiaens PIH (2018). Interdependence between EGFR and Phosphatases Spatially Established by Vesicular Dynamics Generates a Growth Factor Sensing and Responding Network. Cell Syst
doi: 10.1016/j.cels.2018.06.006.

Koseska A, Bastiaens PI (2017). Cell signaling as a cognitive process. EMBO J
doi: 10.15252/embj.201695383.

Koseska A, Volkov E, Kurths J (2013). Transition from amplitude to oscillation death via Turing bifurcation. Phys Rev Lett 111(2):024103.
doi: 10.1007/s11538-013-9807-8. 

Koseska A, Volkov E, Kurths J (2013). Oscillation quenching mechanisms: amplitude vs. oscillation death. Physics Reports 531(4), 173.

Koseska A, Ullner E, Volkov E, Kurths J, García-Ojalvo J (2010). Cooperative differentiation through clustering in multicellular populations. J Theor Biol 263(2):189-202.
doi: 10.1016/j.jtbi.2009.11.007.

loading content
Go to Editor View