Processing Temporal Growth Factor Patterns by an Epidermal Growth Factor Receptor Network Dynamically Established in Space

Koseska A, Bastiaens PIH (2020) Annu Rev Cell Biol

Quelle

The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.

Zur Redakteursansicht